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Intermittency effects, in magnitude comparable to the early Batchelor & Townsend 
(1949) experiments, are studied for stationary, homogeneous, isotropic turbulence by 
means of a direct spectral simulation on a 643 lattice. The turbulence is kept stationary 
by a coupling to modes external to the spectral code that model the straining effects 
of large scales on smaller ones. The rate of energy input and viscosity are free para- 
meters. The interrelations of intermittency and parametrizations of the large scales 
are discussed. Small-scale universality and a local cascade are necessary if compre- 
hensive models of the large scales are to prove tractable. An iterative method to deter- 
mine the otherwise arbitrary parameters in such a scheme is proposed but not 
implemented. 

The equations for energy and vorticity balance are checked as a function of wave- 
number. The nonlinear (e.g. vortex stretching) terms in the spectral simulation account 
for nearly 95 yo of the vorticity production with the external forcing supplying the 
rest. The non-dimensionalized one-dimensional energy spectrum agrees well with 
experiments in the dissipation range at  R, - 100. The locality of the energy cascade 
in wavenumber is also examined. 

First- and second-derivative flatness factors of order 4-5-5-0 and 9.0 respectively 
are found under stationary conditions with bursts to higher values. Resolution and 
other systematic errors are explored by extensive runs with a 323 code; de-aliasing 
all higher-order derivative statistics; and recomputing selected averages after zeroing 
in succession the highest- and lowest-wavenumber bands. The latter analysis is of 
some relevance to the experimental problem of gauging how a finite-length hot wire 
biases a flatness measurement. A host of other higher-order derivative statistics are 
computed, including the vorticity/rate of strain correlations. Three-dimensional plots 
of the vorticity reveal persistent and extended tubes, sheets and blobs. 

1. Introduction 
It has long been obvious that the direct numerical simulation of three-dimensional 

turbulent flows will never reach the Reynolds numbers that are routinely attainable 
in the laboratory. Nevertheless, much useful information about the large scales of 
motion has been obtained numerically by parametrizing how scales too small to be 
resolved act back on those being simulated. Since our interests here are the small 
scales of motion and intermittency, we were led to consider the converse problem of 
modelling the large scales of motion. In the following paragraphs, we will outline, in 
analogy with subgrid modelling, how to assess the validity of models of the large 
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scales and fix the parameters that  enter them. We will then discuss why the existence 
of small-scale intermittency greatly complicates such a modelling effort. Our discussion 
will be phrased in terms of homogeneous isotropic flows. 

Imagine a computer code designed to  simulate the Navier-Stokes equations over 
a range of wavenumbers, k ,  satisfying k, 6 k < A. To test a subgrid model, one would 
first simulate all wavenumbers up to A using ordinary viscous dissipation. A second 
code, restricted to  k,  < k < &I, together with some subgrid model would then be run 
forward from the same initial conditions. The free parameters in the model are to be 
adjusted to obtain the best fit between the large-scale statistics of the two runs. These 
parameters could then be used in conjunction with the larger simulation and a second 
iteration done. This methodology is predicated on the belief that the statistics of the 
large scales are Reynolds-number independent for large RA. I n  particular, with a 
sufficiently large code, any subgrid model that provided enough dissipation at  high k 
should suffice. The considerable effort that has gone into subgrid modelling is directed 
toward finding the model that gives the most accurate large-scale statistics for fixed 
hlk, (Clark, Ferziger & Reynolds 1979). The methods’ convergence, as Ao/k,  and RA 
tend to infinity, is not a t  issue. 

A model of the large scales is in essence a technique of forcing the remaining scales 
that are actually in the computer. The determination of the optimal scheme (formally 
defined by a set of parameters Po), proceeds in analogy to the above paragraph up to 
a point. Run a simulation spanning k, < k < A and determine a comprehensive set 
of small-scale statistics. They will of course depend on the viscosity or whatever other 
dissipation Ansatz was used. Now run a second simulation covering Zk, < k < A, with 
the same dissipation as before, and adjust the new forcing parameters, PI, so as to  
reproduce the small-scale statistics of the larger simulation. The ratio A/k,  should 
be sufficiently large so that the determination of Pl from Po is unaffected by the arbi- 
trary choice of dissipation. 

Among the parameters PI must surely be included the rate of energy input, E ,  since 
it determines the principal features of the energy spectrum. Let us define a relevant 
parameter to be one whose adjustment is required if the small-scale statistics are to 
ultimately match for A / k o  arbitrarily large. If Kolmogorov’s 1941 theory were strictly 
true, E would be the only relevant parameter. Having correctly set E ,  one could examine 
the other elements of Pl with a view toward accelerating the convergence between the 
two simulations for finite A/k, .  However, Kolmogorov’s 1941 theory is not correct 
since the small scales are not Reynolds-number independent. Small-scale intermittency 
destroys the simple analogy that would otherwise exist between subgrid and super- 
grid modelling. 

Intermittency, i t  is generally believed, grows with the range of accessible scales, 
other parameters being constant (Monin & Yaglom 1975). A simulation covering 
k, < k < A will, for instance, give a larger velocity derivative flatness than one 
covering Zk, 6 k < A with E and the dissipation being held fixed even if A/ko is 
arbitrarily large. (The flatness factor of a quantity y with mean zero is defined aa 
Fy = ( ~ ~ ) / ( y ~ ) ~ . )  In the above nomenclature, there must be other relevant variables 
in addition to  E to  compensate for the missing octave of wavenumbers, k, 6 k < 2k,, 
in the smaller simulation. To make the two simulations match statistically on the 
small scales, it is perhaps plausible to  let E fluctuate about the mean set by the larger 
simulation (Kraichnan 1974; Mandelbrot 1976; Frisch, Sulem & Nelkin 1978). To 
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accomplish this, in practice, requires a model for the time dependence of e rather 
than just its probability distribution (Siggia 1977, 1978). Whether all relevant para- 
meters, in the sense defined above, relate to & and its fluctuations is not known. The 
degree of small-scale universality that exists among flows with very different large- 
scale features (jets, wakes, boundary layers) suggests that there are not too many 
relevant parameters. 

Intermittency greatly complicates the numerical study of small-scale or dissipation- 
range statistics at  high R,. Whereas the large scales are Reynolds-number independent 
for large R,, here one is required to consider explicitly a Reynolds-number dependence 
and address a more complicated question than arose with subgrid models, namely 
how to simulate a much wider range of scales than can be directly accommodated in 
one’s computer. This problem is not intractable if there are sufficiently few relevant 
variables and an accurate forcing parametrization can be devised. 

Simply stated, use the parameters PI obtained as above as input to a simulation 
spanning 2k0 ,< k < 2A. Determine small-scale statistics and match to the analogous 
quantities obtained from a simulation spanning 4k0 < k < 211 by adjusting the new 
forcing parameters Pz. After each iteration, the viscosity can be decreased so as to 
increase R, by roughly 28. The elements of pi characterizing the intermittency should 
increase secularly with the iteration number i. 

The program we have outlined can prove impossible to implement in a number of 
different ways. The cascade may be quite non-local and require a larger simulation 
than is now feasible to encompass it. Lack of universality (i.e. many relevant para- 
meters) is another difficulty that could render any large-scale parametrization un- 
manageable. The latter problem is of physical interest and under favourable circum- 
stances one might hope to isolate the large-scale perturbation whose influence is felt 
on the small scales. Somewhat unexpectedly, very long integration times were needed 
to obtain accurate statistics owing to the appearance of temporal intermittency, whose 
manifestations were a few rare but violent events that dominated small-scale statistics. 
Insufficient machine time has prevented us from doing much more than an initial 
comparison of runs covering different scale ranges and an examination of sensitivity 
to certain forcing parameters. Non-local interactions were not a problem; and, in 
following the time development, various measures of intermittency moved together, 
suggesting some element of universality. Apart from our iterative scheme, the simu- 
lations permit a detailed examination of many manifestations of small-scale inter- 
mittency. Although the Reynolds number is still modest, there is no doubt about the 
existence of intermittency. 

In the following section, the numerical techniques are summarized with particular 
attention to the large-scale modelling. In $3(a ) ,  we tabulate and discuss the global 
(e.g. volume-averaged) parameters associated with our numerical runs. The behaviour 
of the forcing as well as the energy and vorticity balance together with appropriate 
spectra constitute $ 3 ( a ) .  In $ 3 ( c ) ,  we collect all data relating to intermittency. This 
includes the flatness and related quantities for the first and second velocity derivatives, 
two-point vorticity correlation functions, and three-dimensional pictures of the mean- 
square vorticity that bring out the structures. In the conclusion, $4, we review the 
experimental situation in th.e light of our numerical results. 
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2. Large-scale parametrizations 
Our spectral code is identical with the one used by Siggia & Patterson (1978) and 

Orszag & Patterson (1972) with suitable technical modifications to make it compatible 
with the Cray-1 computer and some minor additions to implement the forcing. The 
nonlinear terms were de-aliased following the Patterson & Orszag (1971) algorithm, 
although with a spectrum as steep as we were using this was probably unnecessary. 

We have argued in 3 1 why an accurate parametrization of the large scales will be 
considerably more delicate than the analogous problem for the small scales. Most of 
our numerical runs, and all the ones we discuss in detail here, were done by using 
modes external to the spectral code to implement the forcing. We believe our model 
is quite close to the correct physics since it reproduces the exact energy and vorticity 
balance equations as a function of wavenumber and has the additional virtue of 
maximizing the Reynolds number a.nd thereby the level of intermittency that can be 
obtained from a given spectral code. The only way to verify definitively the complete- 
ness of our model forcing is through the iterative scheme we have outlined in $1. 
Since the results of the next several sections all indicate that small-scale statistics are 
insensitive to the large scales, we believe that the intermittency we observe is as real 
as what can be measured in a small laboratory wind tunnel. Nevertheless, to guard 
against some unforeseen error, we have redone several runs with a completely different 
forcing scheme, discussed at  the end of this section, that reproduces exactly the 
coupling implied by the Navier-Stokes equations between the forcing modes and the 
‘fluid’ modes. Fidelity of interaction is obtained at the expense of a smaller RA and 
less intermittency. Except for differences that can be plausibly attributed to the 
smaller RA, small-scale statistics were qualitatively unchanged. 

Consider an artificial partition a t  a wavenumber k,  separating the velocity 

v ( 4  = V < ( 4  + v,(4 

into two pieces, v, and v,, that derive respectively from wavenumbers less than and 
greater than k,. The equation for the time derivative of v, will have three terms that 
depend on v,. The first, symbolically v, . Vv,, is independent of v, and would appear 
like an inhomogeneous forcing term in the equation for &,/at. It directly affects only 
wavenumbers k < 2k0. Of the two remaining terms, v, . Vv, does not enter the energy 
balance equation. That is, if we imagine integrating &&/at over a bounded or periodic- 
ally continued region, the energy input from v, . Vv, integrates to zero. The remaining 
term, v, . Vv,, is responsible for all the energy transfer. In fact, only the rate of strain 
due to v, enters the equation €or a/v;/at. 

The model we have therefore adopted to represent the coupling of all degrees of 
freedom with k c k ,  to the modes in our spectral code is: 

where S is a symmetric, traceless matrix perpendicular to k and Pk is the transverse 
projection operator, PEb = ( W ’ - k a k b / k z ) .  The forcing term in (2.1) is trivially com- 
patible with a spectral code since S depends only on time. 

Clearly (2.1) is a poor representation of the large-scale strain for k ,  d k < 2k,, 
since we have not attempted to model v, . Vv, and have neglected the r dependence 
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of V v , .  We will verify below that errors in the first wavenumber band have a small 
effect on intermittent quantities. A more serious omission is the term, v,  .Vv,, which 
one would be tempted to model as SablbVav, .  An explicit dependence on a spatial 
co-ordinate is very awkward to handle with a spectral code since the Fourier trans- 
form of r is not absolutely convergent, and its derivative cannot be computed simply 
by multiplying by the wavenumber. 

It is necessary, however, to include v ,  . V v ,  if the transverse part of the velocity 
equation is to reproduce the correct linearized equations for vortex stretching in the 
straining field generated by v,. Equation (2 .1 )  does not satisfy this requirement even 
though the integrated equations for the energy and vorticity balance are correct, 
namely : 

ax Ivk12 
- l k  = - x v - k .  s . v k - Y  x k21v,la, (2 .2a )  
2 at k k 

i a  -- x Iwk12 = x 0 - k .  s w k  + 2 iw?k(wk_p q v : - v k , .  qw:) - Y  k21Wk12a (2 .2b)  
2at k k k k 

The second cubic term in (2 .2b )  of course vanishes when summed over all k but is in 
general non-zero when summed over a band of wavenumbers as we will do when 
computing spectra. The derivation of (2 .2b )  from (2.1) requires the identity 

( k x w ) . S . ( k x w )  = - k 2 ~ . S . w ,  

which holds provided tr S = 0, Sab = P a ,  and k. S = 0; tr S is the trace of the matrix 
S. For our actual runs, in excess of 90 yo of the vorticity was produced by the non- 
linear term wao.Vv,,  which is of course simulated correctly, so we do not believe 
that the neglect of v ,  . V v ,  is too serious. 

We have now to model the time dependence of the rate-of-strain matrix, Sab, due 
to the large scales. Let G run over the set of 26 wavenumbers of the form &k,(n,, n,, n3), 
where ni = 0, & 1 ,  and G2 > 0. Then consider the system of equations for velocity 
modes ua (Siggia 1977), 

where P is again the transverse projection operator, 

E * = W  UQP, 
a 

and a is a free parameter. If we now set 

and determine the eddy damping 7 from 

7 = t x v - k * S * V k / E u )  
k 

we find that 
a 

(Eu + Ev)  = c ( t )  - 2 k21vkI2, 
k 

where E, = &X lvk12. Energy is transferred conservatively between the u and v modes 
and s(t )  is the rate of energy input into the combined system. 

The large-scale parametrization represented by ( 2 .  l) ,  (2.3)-(2.5) has many practical 
virtues. The energy input, B,  can be specified as an independent parameter and it is 

F L h I  107 '3 
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FIGURE 1. The energy in modes 2 < k c 32 as a function of time for a 
portion of run 1 a (table 1) after initial conditions have relaxed. 

simple to  insert non-trivial models for its time dependence. The parameter a governs 
the rate of phase mixing among the large scales. A zero value would model a static 
strain. One would like t o  determine, through the iterative scheme outlined in 9 1 ,  the 
optimal value of a. 

Note that we have not included a term in (2.3) that could be used to adjust the 
determinant of S although such a parameter might prove to  be relevant. Betchov 
(1956) has shown that the determinant of the rate-of-strain matrix is related to the 
skewness in homogeneous isotropic turbulence. On average det (S) should be negative. 
We have monitored det (S) as our simulation evolves and have found no correlation 
between the geometry of the small-scale structures and the sign of det (S). 

The time integration is initialized with Gaussian random velocity modes having a 
prescribed spectrum. A skewness is quickly established and somewhat more slowly, 
though in much less than a large eddy-turnover time, 

2 v - k .  s. Vk 
k 

reaches a value of order 8. Equations (2.1), (2.3)-(2.5) permit an exchange of energy 
between the u and w modes that can deviate considerably from E for short periods of 
time. Figure 1 shows a segment of the time record. I n  spite of the fluctuations, the 
system is stable and a time average of the dissipation in (2.1) equals E (see also Siggia 
1977). 

If one believes, as we do, that local interactions in wavenumber suffice to explain 
the experimentally observed small-scale intermittency in three dimensions, the 
fluctuations between the u and v modes effectively boost the Reynolds number of the 
simulation beyond what one would compute for the spectral code in isolation. We 
believe that intermittency develops as the cascade proceeds and, the larger the range 
of scale sizes available, the greater will be the intermittency. It may be objected that 
the coupling represented by (2.1), (2.4) and (2.5) is not a faithful representation of 
the Navier-Stokes equations and that the intermittency thereby generated is not the 
same as what is seen experimentally. Whether this is indeed true depends on the degree 
of universality of the small scales or alternatively on what are the relevant variables. 
We will present comparative data below from 323 and 643 simulations that shared a 
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common upper cut-off in which a portion of the intermittency in the smaller simulation 
is generated by the temporal fluctuations seen in figure 1, while the 643 simulation 
fluctuated very little. Averages of small-scale quantities are very similar in the two 
simulations. 

Although all of the data discussed in detail below was obtained from (2.1) and (2.3)- 
(2.5), several runs were redone with a different forcing scheme that neglects neither 
v, . Vv, nor v, . Vv,. This was accomplished by splitting off the time evolution of the 
first band of modes in the spectral code, k, < k < 2k,, from the remainder and time- 
stepping them according to 

where the sum on k‘ extends over only the first band. The coupling between the first 
band and all k 3 2k, is now reproduced correctly in accordance with the Navier- 
Stokes equations by the fast Fourier transform. A quantity S, as in (2.1), is not 
needed. This new algorithm of course decreases the range of dynamically free scales 
by a factor of 2. We again remark that except for the expected decrease in the overall 
level of intermittency no qualitative features of the small-scale statistics changed upon 
going from (2.3) to (2.6). 

3. Numerical results 
(a )  Mean quantities 

For future reference, table 1 contains a digest of the runs to be discussed below. The 
323 and 643 simulations have been run in pairs with a common upper cut-off. The 
actual maximum wavenumbers differ slightly due to the de-aliasing algorithm 
(Patterson & Orszag 1971). The information contained in the last incomplete shell is 
generally discarded. The box size in real space is the inverse of the minimum wave- 
number times 27~. The viscosities were chosen identically in corresponding runs while 
the values of E differ slightly to account for energy dissipated in the first band of the 
643 simulation which has no counterpart in the smaller code. 

Our rather long runs were mandated by the fluctuations we observed in the small- 
scale data in subsection ( c )  below. Run l a  was followed for 54 ( =  120(2E,)*/n) large 
eddy turnover times or 17 000 time steps. The 643 code was necessarily run for shorter 
times; but, since it contains 8 times as many points, the small-scale statistics are 
comparable to the 323 runs. The first several large eddy-turnover times were neglected 
in each of the runs to allow the initial conditions to relax. 

The mean-square velocity and vorticity are tabulated for only the modes in the 
spectral code, excluding E, defined in $ 2 .  Increasing a is expected to decrease the 
energy in the first few bands while leaving the higher bands unaffected. If the force 
fluctuates more rapidly, the larger scales will be less able to follow it and extract 
energy. For some of the longer runs we have done the statistics piecewise to estimate 
sampling errors. These estimates can be transferred to the shorter runs by scaling with 
the square root of the integration time. 

Three different measures of isotropy are tabulated. The ratio of the trace of the 
square of the average ofSa” to the trace of its square averaged is a memiire of whet,her 
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FIGURE 2. The effect of increasing a in (2.3). The continuous curve is the energy spectrum of 
run l a  (a = 2), the points are from run 2 d ,  and the dashed line has a - f  slope. The energy 
difference in the first band, 2 < k < 4, plotted at k = 3 is real. 

the forcing modes, u,, in (2.3) have evolved sufficiently to sample fully their phase 
space. There is a tendency to use larger values of a in (2.3) than would otherwise be 
judged optimal for this reason. The only problematical run was 1 b. Here the system 
seemed to get stuck in a particular configuration that led to very efficient energy 
transfer between the u and v modes of 5 2. Efficient of course means that E, became 
quite small while maintaining 

v - k .  s. Vk 
k 

about equal to e. The u modes consequently evolved very slowly. We believe this 
event to be just a fluctuation and not indicative of any instability in our parametriza- 
tion of the large scales. 

Irrespective of the large-scale anisotropy in run 1 b we will see that, beyond the first 
few bands, all the spectra from runs 1 b and 2 b agree. Thus, run 1 b provides a useful 
illustration of the degree of small-scale universality in isotropic turbulence. 

The anisotropy in the small and large wavenumbers in the spectral code is measured 
by the mean-square velocity and vorticity components normalized to 1. The vorticity 
is uniformly isotropic even when the large scales are as anisotropic aa run 1 b. Although 
the 643 runs give good small-scale statistics, most of the energy resides in the first few 
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3 x  

k (cm-') 

FIGURE 3. Comparison between the energy spectra of run l a  (points) and run l b  (curve). 
The first band of wavenumbers, 1 < k < 2, from run 1 b was not plotted, and the remaining 
bands were added pairwise so as to be comparable with the 323 data from run 1 a. 

bands where there are no more modes than in the 323 code. The larger box is not wholly 
compensated by the larger energy attained in the 643 simulations, making the isotropy 
of (vj) more difficult to achieve. Run 1 b only lasted for 12 large eddy-turnover times 
of which the first two were excluded from the averaging. 

( b )  Spectra 

Running averages of seven spectra were maintained for each run in table 1.  In addition 
to the energy there are separate spectra for each of the three terms in the energy and 
vorticity balance equations, (2.2a, b ) ,  corresponding to input from the force, non- 
linear transfer or production, and dissipation. All spectra are actually integrals over 
wavenumber bands defined as: 

n < k < n + l ,  

2n < k < 2n+2,  

n = f , 2 , .  ., 30 for 643, simulation 

n = 1 , 2 ,  ...) 15 for 325 simulation. 

The energy spectra thus have units of c r n 2 r a .  Like-numbered bands contain the same 
number of modes, though, for a given range of wavenumbers, the 643 simulation uses 
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FIGURE 4. Comparison between the energy spectra of run 3 b (solid line) and run 2 6 
(dashed line). The Kolmogorov lengths are respectively 13 and 28. 

a denser lattice in k space. When 323 and 643 data are compared on a single graph, 
the first band is generally ignored and the remaining bands added pairwise to obtain 
14 numbers that then represent the same bands of scales computed by the 323 code. 
The last band is incomplete and generally ignored. For the large scales, the band 
integrals do not strictly correspond to spectra since the bands are of finite width and 
the mesh of points in kspace is somewhat uneven. Nevertheless, we maintain it is 
still permissible to compare the two simulations bandwise since the same range of 
scales is involved. 

In  figure 2 we show the energy spectra for runs 1 a and 2a along with a line corres- 
ponding to a - 8 law. The difference between the first bands is real a.nd is responsible 
for the difference in energies noted in table 1. All other bands agree to within statistical 
uncertainties. At least by this crude measure, the small scales are universal with 
respect to the parameter a. Similar agreement was obtained between runs 1 b and 2b. 
We use a somewhat larger viscosity than is commonly done to resolve the first deriva- 
tive flatness (see below). The slight hook at the upper cut-off is a truncation effect that 
is commonly seen with a purely viscous damping and is not believed to affect lower 
wavenumbers. It can be removed by any of a number of schemes that attempt to 
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FIGURE 6. Comparison of the dimensionless one-dimensional energy spectrum times (7kJ4 
between experiment (Champagne 1978, figure 26, R, = 138) and run l b .  The experimental 
numbers are shown as points. The Kolmogorov length is denoted by 7 and Q, satisfies 

model the eddy damping due to modes beyond the cut-off (Kraichnan 1976; Siggia & 
Patterson 1978). 

The R, computed from just the modes in the spectral code is - 35 for the 323 and 
N 60 for the 643 simulations. The actual R,, we estimate, is a factor of 2% larger because 
of the exchange of energy between the u and w modes (2.3)-(2.5). The computed level 
of intermittency is compatible with the larger R,. 

Of somewhat more interest is a comparison between a 323 and 643 run in figure 3. 
The difference between the two runs in the first band, 2 < k < 4, is within statistical 
uncertainties. Higher bands also agree except for a small oscillation in the 323 spec- 
trum that we have seen before (Siggia & Patterson 1978) and do not understand. 
Somewhat better agreement was found between runs 2 a  and 2b.  

Runs 3a and 3b are highly dissipative (figure 4). It was necessary to make the 
Kolmogorovwavenumber, q-l, less than 4 the upper cut-off to fullyresolve the second- 
derivative flatness. 

Lmtly in this series is a plot in figure 5 of the one-dimensional energy spectra 
E,(k,) times k: in dimensionless form along with experimental data from a cylinder 
wake experiment at R, = 138 reported by Champagne (1978). The experiments are 
virtually R, independent in this range, so it doesn’t matter that the computation does 
not reach his R,. There are no free or fitted parameters in either theory or experiment. 
An integral had to be performed on the numerical data to extract the one-dimensional 
spectra. It was done numerically after fitting the three-dimensional energy spectrum 
t o  a continuous function. The one-dimensional spectrum was completely independent 
of fitting function for yk, 5 0.55. To do the integral for larger yk,, we chose a fitting 
function that was plausible for k -+ m, namely 

a 

k* 
E(k)  = - exp (bkb + ck) ,  
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Run la 2a 3a l b  2b 3b 

Forcing 11.9 14.6 6.2 6.8 6.7 4.2 
Nonlinearity 65.0 66.2 13.9 70.2 70.4 16-1 
Dissipation 77.0 80.8 20.0 76.5 78.3 19.2 
Skewness 0.49 (kO.01) 0.49 (k0.02) 0.47 0.50 0.61 0.49 

387 

TABLE 2. The three terms in the vorticity-balance equation (2.2b) time averaged. 
The ekewnesb is computed from S = $415 (uiw.Vui)/(u*)#. 
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FIGURE 6. Spectra corresponding to the three terms in the vorticity balance equation (2.26) 
for run 1 b. The dash-dot, solid, and dashed lines correepond respectively to the forcing, non- 
linear production, and the negative of the dissipation. The corresponding spectra from run 2 b were 
virtually identical for k 2 4. 

with a, b, and c free parameters. By fitting to other functions that behaved unphysically 
for large k we were able to vary the last point in figure 5, Tk, = 1, by 50 %. The small 
unphysical tail in figure 3 at  high wavenumbers has no effect on our determination 

Monitoring the three terms in the vorticity balance equation ( 2 . 2 b )  has proved to 
be a very useful diagnostic for our simulation (table 2 ) .  Several trends are apparent. 
Increasing a decreases the energy in the first band and increases the ratio of vorticity 
injected to that produced by the nonlinearity. In all runs with v = 0.01, however, 
the internally generated vortex stretching is the dominant source of vorticity, which 
is one reason why we are not concerned about the nonphysical features of (2.1). The 
vorticity balance equation is indeed well satisfied. The energy equation is almost as 
well confirmed with the residual discrepancy quantitatively accounted for by the 
difference in energy between the initial and final times in the average. 

The spectra corresponding to the entries in table 2 provide a quantitative measure 
of the distribution in wavenumber of the forcing and production. The code does not 
separate the two cubic terms in ( 2 . 2 b )  and the net transfer into a band is always in- 
cluded with the production, w%. Vva, when spectra are computed. The overall 

of Edk, ) .  
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FIGURE 7. Nonlinear vorticity production spectra for a portion of run l b  before (solid) and after 
(dashed) zeroing all modes with 1 < k < 2. The integrated production decreases from 69 to 
57 (+). The change in shape is a useful measure of the range of interaction in wavenumber. 
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FIQURE 8. Spectra corresponding to the three terms in the vorticity balance 
equation (2 .2b)  for run 3 b, following the notation of figure 6. 
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FIGURE 9. The nonlinear vorticity production spectra from run 1 a (points) 
and run l b  (curve). The first band from the 643 run was not plotted. 

balance noted above continues to hold band by band. Figure 6 shows the three spectra 
for run 1 b. The vorticity produced by the external shear is surprisingly confined to 
quite small wavenumbers, even though the spectrum falls entirely within the dissi- 
pation range. Note that the ratio of forcing to nonlinear transfer or production is the 
same for the energy and vorticity beyond the first few bands. At a wavenumber of 8 
in figure 6, the forcing is only 15 % of the production term. To verify that this is not 
an artefact of the large scale parametrization, all spectra were recomputed after 
zeroing the modes in the first band. A comparison is then made between the vorticity 
production spectra, computed entirely by the spectral code, before and after zeroing 
the first band, figure 7 .  One’s estimate of the interaction range is unchanged, that  is, 
by k = 16 the two curves in figure 7 agree to within 15 %. 

Figure 8 is the analogue to figure 6 for run 3b. The vorticity dissipation is now fully 
resolved, while it was not in figure 6. The energy spectrum falls by over 108 from the 
first band t o  the last in run 3 b and yet the nonlinearity still dominates the forcing at 
high wavenumbers. 

Figure 9 compares the vorticity production in runs 1 a and 1 b .  The curious dip in 
the 323 spectrum at  k = 13 is not an artifact of limited statistics but rather asystematic 
error we do not understand. The 323 calculation falls below run 1 b a t  small wave- 
numbers since the modes 1 < k < 2 are missing in the former. The dashed curve in 
figure 7 (modes 1 < k < 2 set to zero) would fit run l a  much better and is a more 
legitimate comparison. The graphs for the total vorticity generation, figure 10, are 
essentially identical and simply a consequence of similar energy spectra for runs 1 n 
and 1 b in figure 3. 

Figure 1 1  shows the effects of increasing a on the vorticity production. The trend is 
in accord with what one would infer from the observed changes in the energy spectrum 
in figure 2. 

We had hoped t o  fix an optimal value of a by comparing only spectral information 
from the 643 and 323 simulations. Both t,he energy in t,he lower wavenumber bands 



390 

10 I I I I I I I l l  I I I  

0 
8 -  - 

- 
I 

6 -  
0 

2 

- 
.- 
u 
v 

= 4 -  ; 

9 

- 
A 

0 
I 
t- 

.- - 2 -  

0 -  - 

-2 I I I I I I l l  I I 1  

E .  D .  Siggia 

8 

0 

-2 

FIGURE 10. Total vorticity production or dissipation spectra for run 1 a 
(points) and run l b  (curve). 

and the shape of the vorticity production spectra, depend in a monotonic way on a. 
When two simulations are run with a common cut-off, the large-scale parameters 
applied to the 323 run ( 2  Q k c 32)  model both the forcing applied to the larger code 
plus the interaction of the first band (1 Q k < 2 )  with the remaining modes. If too 
large a value of a is used in a 643 run, it should be partially compensated, insofar as 
modes k 2 2 are concerned, by the degrees of freedom in the first band. Based on our 
impressions of how rapidly initial anisotropies disappear in time, we believe that 
a = 4 is rather large, yet we find that the energy between 2 < k c 4 from run 2 b  is 
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0.470 while run 2a gave 0.466. For comparison note that run l a  gave 0.570. We had 
hoped 2 a  would have been smaller than it was, implying an optimal a smaller than 4. 
The analogous data from runs 1 a and 1 b were also very close. We have also attempted 
to fix a by comparing the vorticity production spectra with all modes 1 < k < 2 
zeroed in the 643 data. A value less than 4 is suggested, but we are too unsure about 
the systematic errors to be certain. 

Both a comparison of analogous runs with different values of a (e.g. run 1 a YS. run 
2a)  as well as between runs with the same a but different resolutions indicates very 
little sensitivity to this parameter beyond the first few bands. While this suggests a 
gratifying universality of the small scales, it also frustrates the scheme outlined in $ 1  
for fixing a and by implication any other parameters one might have introduced into 
the forcing function. 

( c )  Higher-order statistics 

(1) Statistical memures of intermittency 

We were led to run the 323 and 643 simulations in parallel in order to fix iteratively 
the parameters modelling the large scales. The most obvious of these is the probability 
distribution of e ( t )  in (2.3). It should thus be necessary for the rate of energy input 
into a 323 simulation to fluctuate if the small scales are to be matched to a 643 run 
at  constant E .  Again we have not succeeded in fixing the necessary parameters, since 
unmanageably long runs are required to accumulate sufficiently accurate statistics. 
A drift in the flatness on a scale of 10 large eddy-turnover times came as a surprise 
to us and suggests that a rather subtle arrangement of modes is responsible for the 
strong intermittent bursts we periodically see. It also indirectly suggests rather less 
local interactions than we inferred from the spectra. 

1,  our simulations, 
in particular the ability to compare codes of different sizes, have yielded interesting 
information on the universality of small scales. We can make this claim, even after 
asserting that our statistics are not good enough to distinguish run 2a from 2b, for 
two reasons. The first is that all measures of small-scale intermittency move together. 
When for instance the flatness, ((~ul/~xl)4)/((~ul/~xl)z)~, computed from two seg- 
ments of data agree, so will the auz/axl flatness and similar quantities. (This assertion 
is documented below .) Secondly, a similar correspondence holds between segments of 
the 323 and 643 runs. Even though much of the intermittency in the smaller simulation 
is temporal in origin, in a sense to be made more precise below, the conventional 
measures of intermittency are very close to the 643 run. In the succeeding paragraphs, 
we will discuss one- and two-point measures of intermittency and at the end display 
pictorally some of the structures imbedded in the dissipation range. 

Higher-order statistics are computed from a history tape on which the velocity field 
is periodically saved (every 0.4, 0.6 s for the 323 and 643 data) in the course of the 
simulation. We think of these data as an experimental tape artificially segmented. 
Thus to compute a flatness we would form (au/ax)4 and (au/ax)z  at each time, sum 
over the lattice and the three equivalent spatial directions, average the various times, 
and finally take the ratio. For a two-point quantity such (uZ(r) w2(0)) - (OP)~,  we 
first did a space and time average of (w2(r)  w 2 ( 0 ) )  and (d) separately and then 
subtracted. 

Just as an experimentalist can divide his tape into segments and compute the 

While we have in no sense accomplished the goals set forth in 
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flatness within each to estimate fluctuations, we can compute the flatness at each 
time. For runs 1 a and 2 a, the time-averaged flatness was appreciably less than the 
correct flatness computed as the ratio of time-averaged correlations. We thus say 
that the intermittency was in part temporal. The time average for run 1 b ,  it will be 
shown, can be done either on the ratio or on the numerator and denominator 
separately with similar results. This does not mean there are no fluctuations, though 
they are less than in the 323 runs, but rather that the numerator and denominator of 
the flatness are sufficiently well correlated to permit interchange of the time average. 
Artificially blocking the 643 data into 8 pieces would give results more like runs l a  
and 2 a .  A comparison between these 323 and 643 runs is thus of added interest due to 
the ostensibly different nature of the intermittency. 

There are several ways to bring out the intermittency in a numerical simulation. 
The first is to follow experiment and compute derivative data a t  a point. This we have 
done extensively and have got a number of quantities either inaccessible experiment- 
ally because of the constraints imposed by the frozen turbulence assumption, or 
difficult to resolve with conventional hot wires. 

Experimentalists have traditionally measured only (( a ~ ~ / a x ~ ) ~ ) .  The flatness is only 
one component of the general %index tensor, (aau,~cu,a,u,a,u,) which even 
though all quantities are at  the same point provides more than just intensity infor- 
mation about the intermittent regions. The general tensor describes in particular how 
the vorticity is aligned with respect to the rate of strain and could very easily distin- 
guish a shear from a pure strain or rotation. 

Exploiting isotropy and homogeneity greatly reduces the number of invariants 
necessary to determine the general tensor completely. Rewrite aaub as the sum of the 
rate of strain e,, = $(aau,+ abua) and the vorticity. The general tensor breaks into 
three pieces that can be distinguished by the number of factors of w. Isotropy implies 
that ( w ~ w ~ w ~ w ~ )  is determined by a single scalar, e.g. ( O ~ O . J ~ ) .  Similarly, ( w e e )  
(dropping indices) can be recovered from the two scalars one can form from the 
indicated fields, namely (w2tre2) and (w.e.e.w).  The exact tensor form will be 
given elsewhere. Finally for (eeee), Betchov (1956) has shown there is only one scalar 
invariant either ((tr (e2)2) or (tr (e4)) (=  105((a~, /ax , )~) /8) ,  provided one remembers 
tr  (e) = 0. Thus using only isotropy and incompressibility we find four scalars deter- 
mine the general &index tensor. It may be shown that homogeneity does not provide 
any further relations among the four scalars (Siggia 1981). All four are tabulated 
below. Our reduction scheme has also been applied to higher-order tensors. 

In any calculation of a higher-order correlation function from numerical data one 
has to investigate to what extent modes beyond the resolution of the simulation 
would alter the result. The simplest check is just to zero successively the first and last 
octaves of data, recompute all correlations and verify changes are small. This we have 
done. It should also be verified that aliasing is unimportant; namely that the lattice 
sum of the product of three or more fields equals the corresponding sum over the 
product of the Fourier-transformed fields with the restriction that the wavenumbers 
add to zero and not zero modulo the box size. A spectrum slightly steeper than figure 
3 is required optimally to resolve, for both small and large wavenumbers, the tensor 

Among the other ways of displaying the intermittency of our simulation are band- 
limited quantities and structure functions. Both provide measures of how fluctuations 
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l a  l a  l a  2d 2cd 2 a  
Run (time) Gaussian (4-40) (40-80) (80-120) (4-40) (40-80)(80-120) l b  2b 

3 4.66 3.68 4.30 6.38 
? 4.45 3.76 4.09 6-00 
3 3.82 3.30 3.80 4.40 
f 3.25 2.86 3.10 4.00 
1 2.07 1.77 1-92 2.49 
1 0.76 0.80 0-87 0.93 
3 7.61 6.50 7.56 10.0 
? 5.55 5.02 5.86 7.58 
1 4.30 2.91 3-95 4.30 
3 15.0 12.2 13-0 16.4 

4.47 5.02 
4.32 4.62 
3-88 4.10 
3.23 3.41 
1.98 2.09 
0-79 0.85 
7.16 8.01 
5.38 6-06 
3.18 3.59 

12.2 14.0 

4.57 5.52 
4.43 4.74 
4.54 4.35 
3.70 3.91 
2.01 2.42 
0.81 1.10 
7-88 15.6 
5.65 8.47 
3.54 4.58 

11.9 20.3 

TABLE 3. Selected higher-order derivative statistics for runs 1 and 2 and a hypothetical system 
prepared with Gaussian random velocity modes. All correlations are normalized by the corres- 
ponding quadratic means aa explained in the text. Correlations marked as (R) or unmarked are 
summed in real space, averaged in time, and then normalized. The spatial average is de-aliased 
prior to time averaging and normalizing in quantities marked with (k) . A correlation for which 
the normalization follows the spatial average but precedes the time average ie denoted by (2’). 

grow with decreasing scale size. Structure functions are difficult to interpret when the 
underlying data do not scale and can show spurious changes when the spatial separa- 
tion approaches several lattice constants (Siggia & Patterson 1978). Similar comments 
would apply to a band-averaged flatness which we haveonly computed as a resolution 
check. 

Next in the hierarchy of correlation functions are those at  two points which provide 
information on the size of intermittent regions. In this category we have computed 
only (u2(r)u2(0)) as a function of Irl and again with the direction of r coinciding 
with each of the three orthogonal axes with respect to which the matrix S is diagonal. 
In principle, a two-point function provides information on the geometry of the active 
regions as well as their size, but such distinctions are rather subtle and model dependent 
(Kuo & Corrsin 1972). To characterize vortical structures definitively as tubes or 
sheets for instance with correlation functions, one has either to compute three-point 
averages or conditionally sample (w2(r) u2(0))  with r either parallel or perpendicular 
to the local vorticity vector. A tube with the vorticity internally aligned would give 
a very different correlation length depending on the relative orientation of w and r. 
Either of these alternatives is cumbersome to implement numerically so we have 
simply made three-dimensional perspective plots of the surfaces of regions of high 
u2 as well as directly plotting the field, w, at selected points. What appears is quite 
dramatic, although one’s assessment of statistics as to what is a tube, a sheet, and a 
ribbon will remain somewhat subjective until more elaborate correlation functions 
are computed. 

(2) One-point statistics 

Table 3 isasummary of theone-point higher-order statistics. The 323dataare broken 
into three segments to give an impression of the magnitude of the fluctuations over 
quite long time intervals ( N 16 large eddy turnovers). The first derivative flatness 
is an average of ( (8wi/Pri)4)  in the 2, y ,  and z directions normalized by ( (0~ ) /15 )~ .  
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E'IQURE 12. Histograms of the instantaneous, though volume-averaged, flatness factors from run 
1 a (2' = 4-40) and run 1 b. The 048 bins are half the width of the 323 bins. 

The isotropy condition (u2)/(tr (e2)) = 2 was verified to about one per cent. Isotropy 
was not invoked to normalize the second-derivative flatness factors. Thus 

where xq = xl. 
The three different values of flatness provide a good measure of aliasing or resolution 

(k 08. R), and the amount of temporal intermittency (R us. T), for any of the fourth- 
order single-derivative correlations. Statistics were recomputed for a portion of run 
1 b after zeroing successively all modes with k < 2 and then k 2 24. Normalized by 
its untruncated value, ((a~,/ax,)~) becomes 0.95 and 0.86 in the two cases considered. 
The flatness of aul/axl varies by somewhat less, from 4.5 to 4.8 and 4.2 respectively. 
Figure 12 contains histograms of the flatness computed timewise for the first segment 
of run la and all of run lb. Three separate values of ( ( w ~ ) ~ )  (R, k, and T) were also 
computed and follow the flatness data. The flatness factorsof the second-order deriva- 
tives are clearly aliased and cannot be compared with experiment. Nevertheless we 
maintain it is legitimate to compare the 323 and 643 simulations with the aliasing since 
they should behave identically at high wavenumbers. 

The extentlof the temporal fluctuations in the flatness and other high-order quantities 
came as a surprise and prevents us from reporting very precise averages. It is quite 
interesting to compare individual data segments, for instance run 1 a (T = 4 - 40, 
T = 80- 120), and 2a (T = 40- 80) in table 3. All the one-point measures of inter- 
mittency move together, whichimplies some degree of uniformity in the active regions. 
It provides evidence that the intermittency can be parametrized without introducing 
complicated phase variables that would couple preferentially to one of the fourth- 
order invariants say. 

A tolerable similarity also exists between run la (T = 4 - 40) and 1 b. This is of 
some interest because the intermittency in the 323 run is largely temporal while the 
three flatness values for the 643 run all agree. Part of the intermittency in run 2b is 
also temporal owing to the exchange of energy between the u and v modes in (2.2)-(2.5), 
figure 1. Its one-point derivative statistics therefore exceed those of run 1 b. 

The two quadratic invariants that involve the vorticity and rate of strain merit 
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Run 3a 3 b  

( (a2u1/89%) (R) 9.5 9.3 
(k) 8.8 9.4 
(TI 6-6 9.3 

( ( ~ 4 U , / a 4 9  10.7 10.8 
( ( 8 % / W *  (%/W2) 3.9 3.5 

TABLE 4. The normalized second-derivative flatness factors following the notation of table 3. 
Resolution errors are estimated in the text. 

comment. The first, (02 tr  (e2)),  seems to move with the flatness and exceeds its 
Gaussian value. It represents a better correlation between vorticity and rate of strain 
than we found previously (Siggia & Patterson 1978), which may be attributable to 
the higher RA. The other invariant, (o . e . e . o), falls below its Gaussianvalue contrary 
to one's immediate expectations based on vortex stretching. On average det (e) < 0, 
so if we work in co-ordinates that diagonalize eaL and assume eS3 < 0 we arrive at 
o . e. e .  o = o?e& + wie'& + @:(ell + e22)2. The simplest representation of the correla- 
tion between e and o is wi - e7eii with 7 a positive free parameter. The correlation 
(w . e . e . w) first decreases and then increases as 7 increases from zero. Note that if the 
intermittent regions were pure shears, (w . e. e . o) would be zero. 

Table 4 collects all the high-viscosity data fromruns 3a and 3b. Thefirst-derivative 
flatness and related quantities are not reproduced since they come largely from the 
first few bands in wavenumber and are not adequately resolved. In  particular, when 
modes 1 6 k < 2 were zeroed in run 3b, ( ( ~ u J ~ x , ) ~ )  changed from 17 to 9. Temporal 
fluctuations in first-derivative quantities are also a problem since fewer modes are 
contributing than in runs 1 a and 2a. 

The second-derivative flatness factors are not aliased, but a second estimate of the 
resolution by zeroing high wavenumbers indicates we should have run with a larger 
viscosity. When Zg((a2ui/ax!)4) was recomputed from a portion of the data of run 3 b 
after zeroing all modes with k < 2 and then with k 2 16, it changed from 1.00 to 0.97 
and 0-64 respectively in rescaled units. The latter two numbers for Zc,((~%i/a~~+,)4) 
were 0.94 and 0.77. The flatness factors of a2ui/axq and a2ui/i3x!+l changed from 9.4 
and 10.3 to 7.0 and 8.7 after zeroing modes with k 2 16. 

Kuo & Corrsin (1971) measured a second-derivative flatnessof 5 at  RA - 30, whereas 
we find a value of order 9 at an R, - 28 based on the modes in the spectral code. This 
is one reason why we believe that our forcing algorithm has effectively boosted the 
Reynolds' number from what could be obtained from the unforced spectral code. The 
agreement between runs 3a and 3b seems to preclude that a single rare event has 
occurred, and we also recomputed the flatness factors from a portion of run 3b  to 
check fluctuations. The resolution errors mentioned above suggest that if the upper 
wavenumber cut-off were increased to 64 the flatness might increase by 10-20 %, but 
R, would not change since the dissipation is fully resolved. 

To lend further support to our unexpectedly large second-derivative flatness we 
repeated run 3 b  with a slightly larger viscosity, and a longer integration time. We 
also modified the forcing algorithm so as to use the first band to drive the remaining 
spectral modes as discussed a t  the end of 5 2. The flatness factors of 82u,/ax$ and 
a2ui/8x4+1 were 7.32 and 10.9. They decreased to 7-00 and 10-8 respectively after 
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FIGURE 13. ( ( w 2 ( 0 ) d ( r ) ) - ( w ~ ) 2 ) / ( ( w 2 w 2 ) - ( ( o ~ ) 2 )  for run l b  (curve) and run l a  (points). 

zeroing modes with k 2 22. Aliasedandde-aliased quantities also agree. The resolution 
is now unquestionably adequate yet the flatness still exceeds experiment. 

Although the results are quite crude, we have conditionally sampled the 32s data 
from runs l a  and 2 a  by scanning the various normalized correlation functions averaged 
over the lattice at  a fixed time. A large flatness is marginally associated with a large 
skewness. It is also found that, when the small-scale structures are sheets and the 
flatness is large, (w . e . e . o) is suppressed uniformly below its timewise average 
while ( w z d )  is essentially the same as the ensemble average. When tubes are the 
dominant structure, (w2@ is enhanced while (w . e . e . w) is unaffected. 

( 3 )  Multipoint statistics 

Figure 13 shows the two-point correlation function ( d ( 0 )  U ~ ( T ) ) / ( W ~ ) ~  - 1, scaled 
to bring out the correlation length of the high-vorticity regions. It contains no hint 
of the rather extended ( 12-30 lattice spacings) vortical structures actually present. 
A conditional sample of only the times showing the most extended structures would 
not appreciably change figure 13. 

The correlation between the eigenvalues and directions of S,, in (2 .3) - (2 .5)  and the 
small-scale vorticity was also examined. The correlation (d( 0) w2(r ) )  was redeter- 
mined with the direction of r coinciding successively with the three eigendirections 
6f S,, at  each time. The correlation length along the stretching direction is about 50 % 
larger than the length determined for the principal contracting direction. There was 
no obvious correlation between det (S) and the shape of the small-scale vortical struc- 
tures. This is probably a consequence of the locality in wavenumber of the external 
forcing, figure 6 ,  and the failure of (2.1) to reproduce the correct linearized vortex- 
stretching equations with respect to S. 

The three-dimensional perspective plots, figures 14-1 9, that conclude this section 
are an attempt to provide a sample, biased in favour of the more extended structures, 
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(1,1,0) ( b  ) 

FIGURE 14. Tvio views of a vortex sheet from run 2a. The flatness is 4.90. The perspective 
adopt,ed corresponds to an observer in the first quadrant, i.e. where 2, y, z are all positive. 
The origin in in the back of the box and the lower front corner, [ I .  1 ,  0) .  is marked in units of 2n. 
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FIQURE 15. Two views of a vortex ribdon that extends through the computational 
box (run l a ) .  The flatness is 3.23 or nearly Gaussian. 



Small-scale intermittency in three-dimensional turbulence 399 

(1,130) 
FIGURE 16. A vortex tube from run la .  The flatness is 8.24. A vortex sheet, which is 

not very well visualized from this angle, extends through the y = 0 plane. 

( I , 1 , 0 )  

FIGURE 17.  Striictiires present at the time for which the highest flntnens, 5.53. 
was computed from run 1 b.  
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(1,1,0) 

FIQURE 18. Two views of an unusually long and persistent vortex tube 
from run l b .  The flatness is 4.28. 

from the thousand or so pictures we haw. Figure 17 is perhaps the most typical as 
regards the size of the vortical structures. It is very difficult to program a computer 
to recognize arbitrary three-dimensional shapes, so we can do no more here than 
record our impressions after surveying the entire set of pictures. The contouring 
algorithm bounds all regions within which the field being plotted, usually &, exceeds 
some value. We set this value so that the enclosed volume was respectively 0.3 yo and 
1 yo of the total for the 643 and 323simulations. Thesenumbers were chosenforaesthetic 
reasons to optimize the visibility of the structures. It was verified that a tube’s length 
or a vortex sheet’s area were only slightly affected by changing the volume fraction 
enclosed. Projections of the three-dimensional data onto the x, y,z = 0 planes were 
regularly made to facilitate estimates of linear dimensions. 

We have seen many examples of vortex tubes and sheets, as well asblobs, withonly 
a tenuous correlation between a large extended structure and a high skewness or flat- 
ness (compare figures 15 and 16 or 17 and 18). We have seen that the matrix S does 
not correlate with the geometry of the dissipation range structures but we have un- 
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(b  1 (1,1,0) 

FIGURE 18(b ) .  For legend see p. 400. 

fortunately not examined the correlation with the rate of strain generated in the lower 
bands. Redoing the graphics after zeroing all modes with k < 2 changes nothing. 

An appreciable fraction of our three-dimensional data was regraphed to bring out 
the direction of the vorticity, figure 19. Starting at each of a random sample of points 
that fell within the previously drawn surfaces bounding the regions of high vorticity; 
a line segment was drawn in perspective parallel to w. Its length was scaled with 101 .  
The vorticity vector was invariably parallel to the axes of the vortex tubes and in the 
plane of the vortex sheets. 

We believe that our 643 simulation fully resolves the spatial extent of the dissipation 
range vortical structures present a t  these Reynolds numbers. We have never seen 
a tube or sheet larger than half of the 643 box, while occasionally a tube was seen in 
the 323 simulation that ran entirely through the box (figures 15-16). Recall that the 
323 and 643 codes were scaled to have the same lattice spacing. Thus, doubling the  
box size does not double the large dimension of the structures, implying that it is not 
box limited. 

Extended structures, however, do tend to persist longer in the 643 box. Exact tube 
and sheet solutions to the Navier-Stokes equations are known in which vortex stretch- 
ing balances diffusion (Saffman 1968). Their stability in different environments has 
not been examined to our knowledge. We conjecture that stability limits their large 
dimension while their direction and shape are correlated with the rate of strain pro- 
duced by the large scalea. These evolve more slowly in the larger box, implyinggreater 
persistence for the underlying structures (figure 20). Figure 21 confirms conventional 



402 E. D. Siggia 

(1, 1.0) 

FIQURE 19. A replot of figure 18 (a) showing the direction of w within the vortex structures. 
Each line segment begins at a point within the structure and its length is proportional to Iw].  

wisdom that structures are most apparent in vorticity plots and do not show up as 
well in the longitudinal derivative or dissipation. 

4. Conclusion 
We have numerically achieved a level of intermittency comparable to the early 

Batchelor & Townsend (1949) experiments by means of a direct spectral simulation 
without resort to subgrid modelling. Our flows are statistically homogeneous and 
isotropic, At these low Reynolds numbers, derivative statistics are the best diagnostic 
of intermittency and a rather extensive set have been calculated. The localityinwave- 
number of the external forcing suggests that, from whatever imperfections the large- 
scale parametrization suffers, the small scales will not be appreciably biased. We also 
endeavoured to ascertain where in dimensionless wevenumber yk (y-l = ( s /v3) f )  
various derivative statistics were determined and then adjusted the spectral shape 
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s I 

FIGURE 20. A continuation of figure 18 showing tlie same structure at a time 0.8 and 1.B (s-l) 
lat,er. Cniisiilt. table 1 for mnre physical units. The flatness factors are 4-69 and 4.65. 
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( I ,  1.0) 

FIGURE 21. A plot of C:=,(au,/a~,)~ at the same time as figure 18. The prominent vortex tube 
is no longer rtpparcnt bnt the vortex sheet perpcntliciilar to the plane z = 277 is nicely rcprodncrcl. 

1 10 30 
F,, I' 

FIGURE 22. Flatness of aul/axl, against the flatness of from Kuo & Corrsin (1971).  
The points counting from the left correspond to R,, = 20, 50 and 100-600 in units of 100. The 
line has rt slope of 0.50. 
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to resolve them. The comparison between the 323 and 643 simulations, scaled to the 
same lattice spacing, was a useful check on the quality of both. 

Considerable interesting information remains to be extracted from our data. The 
interaction between different scales was not studied and it would be interesting to 
see in some detail how the vortex structures are generated. 

The current state of our knowledge about universality in the small scales of fully 
developed turbulence is aptly characterized by figure 13 of Kuo & Corrsin (197 1 )  and 
comparable plots in Van Atta & Antonia (1980) of the first-derivative flatness and 
skewness. The scatter among different experiments is immense and, we believe, largely 
due to uncontrolled and unreported systematic errors rather than non-universal 
behaviour in the small scales. Sampling errors may also have been an unexpected 
source of scatter in view of the rather long integration times we found necessary for 
statistics to settle down. A second problem experimentally is the non-universality 
of RA and the difficulty of determining it in the atmospheric boundary layer. 

The values of S / F i  in table 3 of Champagne (1978) are thus of considerable interest 
since they are constant from R, = 182 to R, - 13000. This is rather unexpected since 
the most one might have hoped a priori  is a universal curve of F us. S with scaling 
only at  large RA. Unfortunately, Champagne has only four experimental points. Our 
value of SIP* is 0.27 f 0.02 versus Champagne's 0.25. The numerical skewness has 
always tended to be somewhat larger than experiment. 

While invoking some, presumably Gaussian, experimental noise could account for 
a low skewness, finite wire effects are possibly also a t  fault, particularly in laboratory 
experiments. Wire-length corrections can be made rather convincingly for spectra 
(Wyngaard 1968, 1969, 1971), but to the best of our knowledge higher-order statistics 
are never corrected. By zeroing high-wavenumber bands, we estimate that to get 
better than 10 yo accuracy at  R, 5 100, all scales out to 1.2/7 for the first-derivative 
flatness and 3.0/7 for the second-derivative flatness should be completely resolved in 
length and frequency. A t  higher R,, fluctuations may develop in the inertial range 
that push the instantaneous 7-1 well beyond its average value. We hope to simulate 
numerically a finite probe and pass it through our data to quantify the wire-length 
errors better. 

To pursue somewhat further the question of small-scale universality with existing 
data, we have replotted in figure 22 the second-derivative flatness found by Kuo & 
Corrsin (1971) against the first-derivative flatness. A fair straight line again results 
with a slope near the lognormal prediction of $. It is tempting to try to place oiir 
numerical data (table 4) on this graph. Run 3 b  did not give a reliable first-derivative 
flatness because of insufficient resolution at low wavenumbers, but we would estimate 
it to be - 4.5 at RA of 50. Plotted against what we believe to be a correct second- 
derivative flatness of 9.3 gives a point below and to the right of experiment. Clearly 
our 4'- is nearly a factor of 2 too large at  these Reynolds numbers. We do not under- 
stand the source of the discrepancy although, as we argued in subsection 1 of § 3 ( c ) ,  
the numerical value of f l W  seems firm. 

Apart from using wires convincingly small enough to resolve the first- and second- 
derivative flatness, it would be of great interest to measure quantities such as 
( (au,/a~,)~) and ( ( 8 ~ ~ / 8 ~ ~ ) ~  (a~~/ax~)~). All attempts to parametrize intermittency to 
date simply count the factors of the local dissipation rate that enter a given average. 
There is no freedom in the phenomenological description to treat tensor elements with 
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the same dimensions but that are not related by homogeneity or isotropy (e.g. 
{u4) us. ((tr (e2))2)) differently (Siggia 1981). 

Lastly, the reader should be reminded that it has not proven feasible to implement 
numerically the iterative method proposed in the introduction for mapping out a 
large range of scales. Posing the problem has at  least led us to structure our simulations 
rather differently than is conventional and to insist on a comparison between the 
323 and 643 codes. The technique outlined in 5 1 bears some resemblance to  Wilson's 
renormalization group (Wilson & Kogut 1974). 

The author is indebted to Dr G. S. Patterson, for making his spectral code available, 
together with T. Bell and J. Curry for assistance in modifying it for the Cray-1. K. G. 
Wilson contributed many useful ideas on how to implement a renormalization group 
numerically. Our computations were carried out at the National Center for Atmospheric 
R,esearch, sponsored by the National Science Foundation. 
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